If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-1936=0
a = 1; b = 3; c = -1936;
Δ = b2-4ac
Δ = 32-4·1·(-1936)
Δ = 7753
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{7753}}{2*1}=\frac{-3-\sqrt{7753}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{7753}}{2*1}=\frac{-3+\sqrt{7753}}{2} $
| 5x-53=x+63 | | 10^-x=9^6x | | 3/4(5x-5)=2 | | 3/4(a+8)=18 | | x+x+49+51=180 | | 6x-28=8x-70 | | –3(5–15n)=15(3n–2 | | 6(1+x)=-12x+7+18x | | 10x+30=20-5x | | 6x-74=x+31 | | 8x+6=5x+10 | | -2(3t-4)+3t=6t-8 | | 5w-36=7(w-6) | | Z+31=6z-74 | | 33/8•117/8•135/8=x | | x+x+51+49=90 | | √24x-48=x+4 | | x+x+49+51=90 | | n-14=-36 | | x+2.5=((4x+3)/4)-((2-3x)/8) | | x+x+51+49=180 | | (21y-1)+97=180 | | -35-5a=-30a | | 5(7x+5)=35x+20 | | 60/q=12 | | C+(c-3)+(5+c-3)=203 | | 7(x-2)=6x-6+3 | | 4x-10=6x-34=2x+80 | | 5x+12=59 | | 7(4x-6)=6-6x+3x | | 2(x+5=-14 | | 6x-34=4x-10+2x+80 |